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ABSTRACT 

The objective of t h i s  research i s  t o  gain insight  in to  t h e  fUndauenta1 
bonding and behavior of energet ic  N, 0, F compounds. Such questions as r e l a t i v e  
s t a b i l i t i e s  of N, 0, F compounds, possible existence or non-existence of new species, 
ionizat ion potent ia ls ,  e lectron a f f i n i t i e s ,  T-bonding, and charge d is t r ibu t ion  of 
t h e s e  species  have been invest igated by performing LCAO-MO calculations using a 
gamut of theore t ica l  techniques (both semi-empirical and rigorous) and analyzing 
t h e  resu l t ing  calculated wave functions,  energy levels ,  charges and bond orders 
f o r  t h e i r  pertinence t o  t h e  above topics .  

-- 

From these calculat ions it has already been possible to :  1) predict  
cor rec t ly  t h e  greater  s t a b i l i t y  of cis-N2F2 r e l a t i v e  t o  trans-N2F2; 
t h e  correct  order of t h e  d i f fe r ing  N-F bond lengths i n  such diverse species as 
NF2, NF3, trans-N2F2and cis-N2F2 and of the  d i f fe r ing  N-N bond lengths i n  cis- 
and trans-N2F2 (pr ior  t o  knowledge of the  experimental electron d i f f rac t ion  
measurements of N2F2 bond lengths) ;  
N-F s t r e t c h  frequencies i n  NF2, NF3, trans-NpF2, N2qand cis-N2F 4) reproduce 
by calculat ions t h e  experimental ionizat ion poten t ia l  of NF2; ??;verify the  
supposit ion of T-bonding i n  NF2mdNF leading t o  a greater  N-F bond dissociat ion 
energy i n  these species than i n  NF3. 

2) predict  

3 )  predict  t h e  correct  order of t h e  symmetric 

INTRODUCTION 

The objective of our research i s  t o  invest igate  t h e  theore t ica l  and 
quantum chemistry of energet ic  N, 0, F compounds with the  aim of providing insight  
i n t o  t h e  mdamenta l  bonding and behavior of these species s o  necessary for the  
guidance and planning of t h e  overa l l  experimental research project i n  t h e  oxidizer 
f i e l d .  

The f i r s t  question w e  asked ourselves a t  the inception of t h i s  research 
was -- what are  r e a l l y  t h e  most important findamental problems t o  be faced i n  
t h e  program i n  high-energy oxidizers.  To us it seems t h a t  one of t h e  most 
over-riding problems i s  t h e  question of energetics -- w i l l  or  w i l l  not a par t icular  
molecule be s table  or perhaps so  unstable it can never be isolated;  and f u r t h e r  -- 
what can be psedicted about dissociat ion paths and dissociation energies of 
molecules. 
what we f e e l  is the only r e a l i s t i c a l l y  va l id  approach, we have undertaken rigorous 
non-empirical LCAO-MO-SCF calculat ions of N, 0, F compounds i n  which we sha l l  
incorporate correlat ion and r e l a t i v i s t i c  energy corrections.  I s h a l l  discuss 
these  more m l y  i n  a moment. 

However, for t h e s e  compounds there  a r e  many other properties of in te res t  
f o r  which solutions using.approximate wave flmctions may y ie ld  r e s u l t s  of suff ic ient  
accuracy t o  permit in te rpre ta t ion  of t h e  desired phenomena. 
have a l s o  undertaken research i n  semi-rigorous calculations with t h e  goal of 
deriving methods cor rec t ly  based on t h e  many-electron Hamiltonian but with simpli- 

I n  order t o  tack le  the  problem of molecular energy calculations by 

For t h i s  reason we 
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fying approximations f o r  the  core and in tegra ls  whichwi l l  make the  calculations 
t r ac t ab le  a t  l e a s t  fo r  medium-sized polyatomic molecules. We have a l so  modified 
t h e  semi-empirical "extended Hfickel method" t o  include a more j u s t i f i a b l e  physical 
in te rpre ta t ion  of the  matrix, elements as  well as  i t e r a t i v e  processes which intro- 
duce a measure of self-consistency. I sha l l  discuss t h i s  l a t t e r  method in  de t a i l  
l a t e r ,  present some re su l t s  of the  calculat ions and show t h e i r  good agreement with 
experiment. 

The calculat ional  technique used for the  rigorous calculat ions i s  
based on Roothaan's SCF method f o r  closed- and open-shell systems.' 
o rb i t a l s  are  constructed as l i n e a r  combinations of atomic o r b i t a l s  

Molecular 

Ti = c ci x 
CI P C I  

and a configurational wave function On i s  represented 
wave function. There a re  two choices for the  form of 
which a re  most i n  current usage 

-1/2 m-1 S la t e r  o rb i t a l s  X = (2On-l(2n!) 

2 2k I m n e(-ar ) Gaussian o rb i t a l s  X = r x y z 

by an. antisymmetrized product 
the  bas i s  atomic orb i ta l s  

S l a t e r  orb i ta l s  a re  b e t t e r  approximations t o  the  form of ac tua l  atomic orb i ta l s  
and atomic wave flmctions composed of sums of S la t e r  o rb i t a l s  f o r  each atomic 
o r b i t a l  ( ra ther  than minimal bas i s  sets which represent each atomic o rb i t a l  by a 
s ing le  S la te r  function) have been sham t o  be good approximations t o  the  t rue  
atomic wave functions and t o  reproduce qui te  accurately the  atomic Hartree-Fock 
energies. Even atomic o rb i t a l s  where each atomic o rb i t a l  i s  represented by only 
two S la t e r  o rb i t a l s  ( the  double t, technique)combine t o  give f a i r l y  good approxima- 
t ions  t o  the atomic wave flmctions2 (although f o r  molecular wave functions where 
one wishes t o  calculate  dissociat ion energies one must use b e t t e r  than a double < treatment and must include some higher o rb i t a l s  t o  allow f o r  atomic d is tor t ion  
upon molecular format iod .  
increase the binding energy since they represent increased f l e x i b i l i t y  i n  the 
o r b i t a l  bas i s  s e t  for  the  molecule.) 
f o r  polyatomic molecular calculat ions i s  the lack of general computational express- 
ions f o r  most of the  three- and four-center in tegra ls  involved. 

A l l  improvements t o  the  %est-atom" wave functions 

The great  problem i n  using S la t e r  orb i ta l s  

The other a l te rna t ive  i s  t o  uselcGaussians as  the bas i s  functions f o r  
t he  atomic orb i ta l s .  pointed out t h a t  a set of Gaussian 
flmctions of the form sham i s  complete and t h a t  the required in t eg ra l s  involving 
these Gaussians (including three- and four-center ones) c n be expres ed as  expl ic i t  
formulas. Recent calculat ions by Moscowitz5 and Harrison' and Krauss7 have sham 
t h a t  molecular wave functions based on Gaussians (GF's) can be made comparable t o  
those based on S la t e r  o rb i t a l s  (STO's), but f o r  s imilar  energy values about twice 
as  many GF's as STO's a re  necessary. 
systems f o r  which, as  yet ,  th ree  and four-center S l a t e r  i n t eg ra l  routines a re  not 
avai lable ,  w e  are  concentrating a t  present on performing our rigorous molecular 
calculat ions using bas is  Gaussian orb i ta l s .  We have been very for tunate ,  through 
the cooperation of Dr .  Moscmitz, of New York University, (formerly of MIT) i n  

A paper by Boys i n  1956 

Since our main in t e re s t  i s  i n  polyatomic 

I .  
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having the MIT POLYATOM program (rigorous SCF calculat ions based on Gaussian orbi- 
t a l s )  made available f o r  our research here a t  RIAS and addi t ional  supplementary 
rout ines  fo r  POLYATOM have been wr i t t en  a t  RIM. As f a r  as  o rb i t a l  energies go, 
calculat ions a t  M I T  indicated t h a t  the Gaussian bases seem t o  give excellent 
results. 
NF compounds. 

Therefore, w e  have proceeded t o  explore SCF Gaussian calculations fo r  

Before I mention our preliminary r e su l t s  t o  date on the  Gaussian 
SCF calculat ions of NF compounds, I should j u s t  l i k e  t o  indicate  how correlat ion 
and r e l a t i v i s t i c  e n e r a  correct ions w i l l  enter  in to  the  estimation of dissociation 
energies of NF compounds. 

Correlation and Re la t iv i s t i c  Ef fec ts  --- 

which holds for  any s t a t e  of any atomic or molecular system. Eexlct i s  the  actual 
energy of the  s ta te ,  % i s  the computed Harbree-Fock energy for  
(accounting f o r  or more of E,, c t ) ,  EC i s  the correlat ion energy i n  the  
s t a t e  ( a  correction term accounting For the  deficiency i n  the  Hartree-Fock model - 
the  antisymmetrized product form of the  wave function and t h e  Pauli exclusion 
pr inc ip le  take in to  account most of t he  correlat ion between electrons of l i k e  
spin - but none between e lec t rons  of opposite spin) and ER i s  the r e l a t i v i s t i c  
energy i n  the  s t a t e  (which i n  t h i s  def in i t ion  includes spin-orbit coup1 ng ef fec ts  
i n  addi t ion t o  t rue  r e l a t i v i s t i c  e f f e c t s ) .  I n  calculations by Clementi', McLeang 
and YoshirninelO on such diatomic molecules as  E?, LiF, BeO, it was found t h a t  
the ne t  contribution of cor re la t ion  energy t o  the molecular binding energy 
(molecule minus separated neu t r a l  atoms) was very nearly equal t o  the  correlat ion 
energy difference between the  atoms separated so  as  t o  paintaiq the s t ruc ture  of 
e lectron pa i r s  i n  the  molecule ( f o r  example HF giving F 
separation) and the neut ra l  atoms in  t h e i r  ground s t a t e s .  
correlat ion energy was qu i t e  c lose  t o  the  difference between t h a t  of a uni ted 
atom corresponding t o  t h e  diatomic and the  neutral  atoms in t h e i r  ground s ta tes .  
Professor Sinanoglull has shown t h a t  pa i r  correlat ions are  nearly addi t ive and 
he has calculated some of these correlat ions non-empirically f o r  f i r s t  row atoms. 
Thanks especial ly  t o  the work of Clementi12 there  i s  now a great  deal of empiri- 
c a l  knowledge of correlat ion energies of f i r s t  and second row atoms. The lament 
current  some few years ago ( tha t  molecular o r b i t a l  wave functions would never be 
good enough t o  calculate  r e l i a b l y  dissociat ion energies) is now being replaced 
by the  more optimistic statement t h a t  the  results of Rarbree-Fock molecular cal- 
culat ions combinedwith empirical knowledge of correlat ion energies can lead  t o  
accurate predictions of dissociat ion energies of molecules. 
the en t i r e  molecular ex t ra  cor re la t ion  energy (of the order of 1.7 ev per bond) 
contr ibutes  d i rec t ly  t o  t h e  d issoc ia t ion  energy and bond dissociat ion energies 
a re  only about 2 t o  4 ev one sees  why 1) correlat ion energy must be taken in to  
account and 2 )  why we must s t r i v e  for accurate wave functions. 

he s t a t e  
99 

and H a t  i n f i n i t e  
Alternat ively the  

Considering t h a t  

N-F Results --- 
The closed-shell POLYATOM program i s  operational and can handle up 

t o  50 basis  orb i ta l s .  We have already run a test of NF with a minimal bas i s  
s e t  f o r  N and F of 3s  and one each px, p , p, orb i t a l s  20 check it out. The 
ordering of the  energy l eve l s  w a s  as  ant ic ipeted,  f i r s t  the  four inner s h e l l  
o rb i t a l s ,  then above them l eve l s  which may be associated with the  three  bonds and 
the  lone pa i rs  on f luor ine ;  t he  highest occupied o rb i t a l  f i n a l l y  corresponds 

Y 
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c lose ly  t o  the  lone p a i r  on nitrogen. 
used was minimal t he  calculated energy was too  high. 
accuracy of t h e  wave function, the  o rb i t a l s  characterizing the  gaussians had t o  
be varied and the  bas i s  expanded. 
l a rge r  bas i s  s e t s  i n  order t o  optimize the  parameters f o r  N and F i n  molecular 
combination. 

Of course, due t o  the  f a c t  t h a t  the  basis 
I n  order t o  improve the  

We then ran calculations on NF i t s e l f  with 

- 
A t  present we are  performing these  calculations on NF2 and NF3 and 

We s h a l l  continue our research on these rigorous calculations of 

i n  the  immediate fu ture  we s h a l l  calculate c i s -  and trans-N2F2 and N2F4. 

NF compounds u n t i l  we have sa t i s f ac to r i ly  been ab le  t o  reproduce the  dissociation 
e n e r a  of an NF compound -- probably NF since t h i s  i s  the  simplest NF molecule 
whose heat of formation and f i r s t  bond &.ssociation energy have been measured 
d i rec t ly .  It was ac tua l ly  t h e  apparently anomolous pattern i n  bond dissociation 
energies of IT? which l e d  or ig ina l ly  t o  our theo re t i ca l  i n t e re s t  i n  NF compounds. 
I n  1961. a t  an American. Chemical Society Symposium on Chemical Bonding i n  Inorganic 
Systems, D r .  Colburn of Rohm and Haas a t  Huntsville made mention of t he  f a c t  t ha t  

t h a t  time t h a t  the reason 
while t he  N-H dissociation energies i n  NET3 were D( 
NF3 the  order w a s  D(F2N-F) < D(FN-F). 

> D(HN-H) > D(N-H) i n  
We 

must i n  la rge  part  be due t o  t h e  f a c t  t h a t  although the re  i s  v i r t u a l l y  no 
Tr-bonding i n  NF 
which is  planar?i3 
%bonding i n  NF2) .  
t ha t  i n  NF3. 
both predicted t o  be due t o  F --f N %bonding i n  NF2 and W2 . 
there  must a lso  be F -+ N %bonding i n  N-F). 

there  must be a considerable amount of F + N  %bonding i n  NF2 
(Our subsequent calculations have confirmed this F + N 
7-bonding i n  NF2 would increase the  N-F bond strength over 

The closeness of ionization poten t ia l s  of NF and NH2 were a l so  
(Incidentally,  3 

Semi-empirical Calculations 

Good rigorous SCF calculations on polyatomic molecules a re  long, 
d i f f i c u l t  and tedious t o  program, and inevitably expensive i n  computer time. 
What was needed was a simple semi-empirical approximate method f o r  three-dimen- 
sional molecular o r b i t a l  calculations. 

I n  recent years increasing use i s  being made of an extended Hdckel 
type LCAO-MO-SCF method f o r  calculation of wave functions and energies of 
three-dimensional molecules (as opposed t o  molecules having separable 7r-systems) . 
This extended Hflckel-type method i s  b sed on a technique apparently or ig ina l ly  
introduced by Wolfsberg and Helmholzl$ and used ov r t h e  years by Longuet- 
Higginsl? , extensively by Lipscomb and co-workers1% espec ia l ly  Hoffman, as well 
by Ballhausen and Gray17. 
combination of atomic o rb i t a l s  X 

From a molecular o r b i t a l  p i  b u i l t  up a s  a l i n e a r  

CI 

'pi = c ci x 
CI 

C I C I  

and applying the  var ia t ion  principle f o r  the  va r i a t ion  of energy the  following 
s e t  of equations f o r  t he  expansion coef f ic ien ts  is obtained 

(Up + ESCIP)cCI + C (BKv - ESpV)cV = 0 V = 1,2,--M where M 
i s  the  number of 
atomic o rb i t a l s  

CI+v 



1 2  

E = energy 
* 

= J x x dv = overlap in t eg ra l  
sWJ C I V  

* 
,HPP = 

= .f X H X dv = Coulomb in tegra l  
P CI CI 

* 
= .f X H X dv = Resonance in tegra l  p # V - - 

HPV q l v  CI V 

tf i s  an e f fec t ive  one electron Hamiltonian representing the k ine t ic  
energy, the  f i e l d  of the nuclei and the  smoothed-out d i s t r ibu t ion  of the other 
e lectrons.  

The diagonal elements a re  se t  equal t o  the  e f fec t ive  valence s t a t e  
ionizat ion poten t ia l s  of t he  o rb i t a l s  i n  question. The off-diagonal elements, 
H can be evaluated in  several  ways: 

PV' 

1) I n  the  ear ly  work on the boron hydrides the  relat ionship 

H = K'SCIV w i t h  K' = - 21 ev was used. However 

one was forced t o  use inordinately high values of K' due 
t o  the  requirement t ha t  K '  be smaller than any diagonal 
matrix element. ( LH+R '5) 

A better-approximation was t o  s e t  

CIV 

2) 

H = O.5K (HW + Hv,)SpV and t o  use K = (1.75 - 2.00) 
PV 

(W-H 14) 

3 )  A similar  expression 

112 s which d i f f e r s  only i n  HPv = K" (HCICI - Hvv)  
CIV 

second order and has cer ta in  computational advantages has 
a l so  been used. (B-G '7) 

4) Cusachs rep0 ed a t  the Sanibel Quantum Chemistry Conference 
l a s t  winterl'that the  repuls ive terms i n  the  W-H model which 
assume electron repulsion and nuclear repulsion t o  cancel 
nuclear-electron a t t r ac t ion ,  consis t  of one-electron an t i -  
bonding terms only. Cusachs noted tha t  Ffuedenberg observed 
tha t  t he  two-center k ine t i c  energy in tegra l  i s  proportional 
t o  the square of the overlap in tegra l  ra ther  than the  f i r s t  
power. We s h a l l  comment m h e r  on t h i s  point l a t e r  - since 
we think there  may be a s l i g h t l y  d i f fe ren t  interpretat ion.  
Hawever, Cusachs used t o  develop the  approximation 

which contains no undetermined parameters and avoids collapse. 

5 )  A t  Is tanbul  Professor a l s o  reported a new scheme 
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f o r  approximating t h e  off-diagonal elements. 

Since t h e  valence s t a t e  ionizat ion potent ia ls  are known t o  be 
f'unctions of t h e  electron population a t  t h a t  atom we have introduced i t e r a t i v e  
schemes f o r  t h e  calculat ion of H such as: 

'P 

- ( m  - q R-l) w R =  R- 1 
(1: R = H  

'a 'a'a 'a 'a 

where R i s  t h e  i t e r a t i o n  cycle number, pa r e f e r s  t o  o r b i t a l  
a on atom p, m i s  t h e  occupation number f o r  t h a t  o r b i t a l  i n  
the  ground s t a t e  and q i s  t h e  electron population on t h a t  

atom i n  t h e  molecule. 

pa 

'a 

which follows a Glockler-type equation and where (1: i s  equal 

t o  the  valence s t a t e  ionizat ion potent ia l .  The i t e r a t i v e  
cycles a r e  continued u n t i l  

'a 

R - l  - q Is 
'a 'a 

R~ < constant 

The off-diagonal elements can be constructed i n  accordance with 
any of t h e  schemes indicated e a r l i e r .  

Preliminary calculations of t h e  extended Hackel-type on NF and OF 
compounds have l e d  t o  a number of in te res t ing  and fruitrul observations. 

N-F Symmetric Calculated N-F 
Compound N-F Distance (i) Stre tch  cm-l Overlap Population 

1.365 1074 0.45 

1.371 1031 0.41 

N F - t rans  1.398 1010 0 *37 

"2 

"3 

2 2  

N2F2- C i s  1.409 (Bauer) 896 
1.384 (Other research) 

0.34 

Quite s t r ik ing  i s  t h i s  t a b l e  comparing our calculated N-P overlap populations 
with experimentally measured N-F bond lengths,  N-F symmetric s t r e t c h  frequencies 
and N-F bond dissociation energies. I n  t h i s  t a b l e  a r e  sham our or ig ina l  calcula- 
t ions  which were performed using Sanborn's estimate fo r  t h e  geometry of N F 
which N-F and N-N bond distances were considered t o  be t h e  same f o r  both $he cis-  
and trans-isomers. 
qui te  c lear ly  t h a t  the  N-F distance i n  trans-N2F2 should be shor te r  than that i n  

2 in 

Our calculat ional  r e s u l t s  based on overlap population indicate  
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cis-N2F2 -- and t h i s  point w a s  experimentally ve r i f i ed  by Professor Simon Bauer 
a t  Cornell. 
d i f f rac t ion  measurements of NF compounds, and asked f o r  our theore t ica l  interpre- 
t a t i o n  of t h e  d i f fe r ing  N-F bond lengths. 
overlap populations, even when using the  or ig ina l  Sanborn estimate of ident ica l  
N-F bond lengths for cis- and trans-N2F2, a r e  capable of predicting correctly the  
order of t he  experimentally measured bond distances PRIOR t o  our knowledge of 
Professor Bauer’s r e s u l t s  i s  very encouraging. The s i tua t ion  seems t o  be similar 
t o  t h a t  explored years ago i n  Hdckel calculations of aromatic hydrocarbons. I n  
condensed r i n g  systems it is  possible t o  do an or ig ina l  Hdckel LCAO-MO 7-electron 
calculation assuming a l l  bond lengths equal. From the  resu l t ing  differences i n  
calculated bond orders it is possible t o  predict  t h a t  ce r t a in  of t he  bonds i n  t h e  
r ings  d i f f e r  in  length from the  others. Refined calculations can then be made 
using d i f fe r ing  values of B i n  order t o  predict  more closely other properties of 
the  molecules. 
capable of enabling one t o  evaluate the  va l id i ty  of experimental measurements. 
For example, the  ca lcu la ted  N-F overlap population i n  cis-N2F2 of 0.34 compared 
t o  0.37 f o r  trans-NpF2 would indicate t h a t  t he  N-F distance of 1.409 A f o r  cis- 
N F2 a s  measured by Bauer i s  more reasonable compared t o  1.39 A f o r  trans-NS2 
&an i s  the  value of 1.384 A measured by another investigator.  
of N-F dissociation energies i s  e n t i r e l y  compatible with the  order of t h e i r  
calculated overlap populations. Bauer a l so  observed differences i n  the N-N 
distances i n  c is-  and trans-N2F2 and these differences are a l so  reproduced by our 
or ig ina l  calculations.  

Professor Bauer sen t  us h i s  student’s unpublished r e su l t s  on electron 

The f ac t  t ha t  our calculated N-F 

The cor re la t ion  of overlap population with bond length even seems 

Also the  order 

N=N Distance A Calculated N-N Overlap Population 

C i s - N  F 1.209 1.29 

t rans-8  F 1.224 1.19 
2 2  

2 2  

F’rofessor Bauer noted t h a t  the  shorter N=N distance i n  cis-N2F2 
is  .en t i re ly  compatible with t h e  grea te r  thermochemical s t a b i l i t y  of the cis-N2F2. 
Also, our calculated t o t a l  energies f o r  

cis-N F -535.83 ev 2 2  

trans-N2F2 -534.80 ev 

confirm the  experimental order of thermal s t a b i l i t i e s  

cis-N F > trans-N F 2 2  2 2  

A f i r t h e r  discussion of some of the sa l i en t  r e su l t s  of these  par t i -  
cu la r  species i s  elucidating. For NF we had a l s o  performed a Pariser-Parr-Pople- 
type SCF open-she1121J22 (including efectron repulsion) calculation f o r  the  
7-orb i ta l s  only of NF2 assuming t h a t  t h e  unpaired electron and a pa i r  of electrons 
on each f luor ine  were i n  a 7 -o rb i t a l  with a node i n  the  plane of t h e  molecule. 
We reasoned t h a t  i f  we were for tuna te  enough t o  make reasonable approximations 
f o r  t he  core, the appropriate valence s t a t e  ionization potentials and the  electron 
repulsion in tegra ls ,  we might a r r ive  a t  a nearly correct value f o r  t he  calculated 
ion iza t ion  poten t ia l  of m2 which we could check with the  experimentally measured 
value. 
po ten t ia l s  calculated by t h e  Pople-SCF method, we calculated the  ionization 

Applying the  usual correction f ac to r  necessary f o r  7-electron ionization 



potent ia l  of NF2 t o  be 11.83 ev, i n  excel lent  agreement with the  experimentally 
measured value of 11.8 ev. 
ionization poten t ia l  i s  no longer equal t o  the  negative of the  o rb i t a l  energy of 
the  highest occupied molecular o r b i t a l  but instead must be calculated from the 
differences i n  the  t o t a l  energies of the  species and i t s  posi t ive ion. (The same 
holds t rue  i n  calculat ing electron a f f i n i t i e s . )  
l i n g  terms between open- and closed she l l s  i n  the  species, one solves two pseudo- 
eigenvalue equations. Without applying any correction fac tors ,  we calculated the  
the electron a f f in i ty  of NF2 as  1.64 - t h i s  quant i ty  i s  as  yet  unmeasured. 

t ed  t h a t  the  highest occupied molecular o rb i t a l  (HOMO) (which was s ingly f i l l e d )  
was indeed a -rr-type o r b i t a l  i n  the NF2 radical .  
va l id i ty  of computing the ionizat ion poten t ia l  from the Pople-SCF ?T-electron 
energies. 

When one i s  dealing with open-shell species, t he  

This is because, due t o  the  coup- 

The r e su l t s  of the  three-dimensional Hffckel calculat ion a l s o  indica- 

This would lend support t o  the 

Three-dimensional Hffckel calculat ions l ed  t o  the  in t e re s t ing  
correlat ion with s t re tch ing  frequencies sham ea r l i e r ,  trans-NP2 having both a 
greater  s t re tching frequency and bond order than cis-Ng2. 
orders f o r  these two isomers a re  nearly ident ica l  the t o t a l  overlap populations 
are s ign i f icant ly  d i f fe ren t .  

Whereas the N-F Tr-bond 

We had a l so  performed Pariser-Parr-Pople-SCF 7T-electron only calcula- 
The coef f ic ienk  of the atomic o rb i t a l s  i n  the four  t ions  on the  two N2F2 isomers. 

r-type molecular o rb i t a l s  of t h e  three-dimensional treatment a re  extremely close 
t o  the  coef f ic ien ts  obtained i n  both the Hffckel-8 and Pople-Sm %electron only 
calculat ions on both isomers. The calculat ions a l so  indicate  t h a t  the HOMO is  not 
a %type o rb i t a l ;  however lying immediately above and below the HOMO a re  two IF-type 
orb i ta l s .  

3 
From the  three-dimensional Hffckel calculat ions the  order found fo r  

the o r b i t a l  energies agrees with tha t  expected: 
which may be associated with t h e  three bonds and the  lone pa i r s  on f luorine;  the 
highest occupied leve l ,  f i na l ly ,  corresponds t o  the  lone pa i r  on nitrogen. This 
i s  exactly the  same order found i n  our rigorous SCF calculat ion using gaussian 
basis  orb i ta l s .  

above the  four inner-shel l  l eve ls  

Thus, fo r  general descriptions of bonding i n  N-F compounds a three- 
dimensional Hffckel treatment leads t o  r e s u l t s  consis tent  with the  propert ies  and 
behavior of knawn NF compounds and thus gives promise of being appl icable  t o  the 
prediction of the  propert ies  of new compounds. 
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